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Summary 

The ions C,H,E’ (E = C, Si, Ge, Sn, Pb) were generated in the gas phase. 
Calculations of the atomization energies confirm their structure as nido-cluster. 
It is suggested that such ions could be synthesized under normal conditions for 
all the Group IVA elements, including carbon. 

In the mass spectra of 7r-cyclopentadienyliron dicarbonyl complexes, 
a--C5H5Fe(C0)2ER3, containing an iron-Group IV element bond (E = Si, Ge, 
Sn, Pb), intense ions C5H5Et are present and these are often the most intense 
[l-6]. They are formed as a result of complex rearrangement from molecular 
or decarbonylated ions C,H,FeER3 (R = alkyl or halide). This rearrangement 
involves the simultaneous participation of at least nine bonds and is character- 
ized by very low activation energy ]1,6]. The unusually high intensity of the 
C&H,E+ ions indicates their high stability. Three possible structures of this ion 
may be suggested: elementaphenyl (A) 6-elementalfulvenyl, (B) and half-sand- 
wich or nido-cluster (C). / 0 \ I 
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Previous calculations of atomization energies of these structures for C,H,Ge’ 
by the statistical method [7] showed the nido-cluster to be the most stable [S]. 

* For part XXII. see ref. 15. 

0022-328X/81/0000-0000/$02.50, @ 1981, Elsevier Sequoia S-A. 



158 

Recently, Jutzi et al. synthesized nido-clusters of (pentamethylcyclopenta- 
dienyl)tin (I) and -germanium (II), the structures of which were confirmed by 
X-ray structural analysis [9,10]. 
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Using the statistical method [ 73 we have now calculated the energies of the 
ions of the type A, B and C for all elements of Group IVA, including carbon, 
and generated them in the gas phase. 

Ions C&&E+ are present in the mass spectra obtained by simultaneous evapo- 
ration of cyclopentadienylthallium with EX, molecules (X = Cl for E = C, Si, 
Ge and Sn and X = C&i5 for E = Pb) at a pressure in the ionization chamber of 
1O-5-lO-’ mM H g ( see Table 1). Their formation may be explained by interac- 
tion of neutral molecule C,H,TI with the ions EX,’ (n = O-4), the most 
probable route being the reaction of CSH,Tl with EX3+ ions (see Table 1). 

In order to estimate the stabilities of &H,E’ ions, the atomization energies 
of structures A, B and C were calculated for all Group IV elements (Table 2). 
The structural parameters used in the calculations are listed in Table 3. Varia- 
tion of E-C bond lengths within 0.1 pi does not change the ratios of the atomi- 
zation energies for the structures nor the nature of the stability variation when 
passing from carbon to lead. Calculation of the nido-cluster structure was 
carried out for a planar cyclopentadienyl ring with distances C-C 1.43 A and 
C-H 1.08 .& The structure of the 6-elementafulvenyl was calculated assuming 
a symmetrical five-membered ring with distances C(l)-C(2) 1.44 A, C(2)-C(3) 

TABLE 1 

RELATIVE INTENSITIES OF C5HgTl+. EXn+ AND CgHgE+ IONS AT SIMULTANEOUS EVAPORA- 
TION OF CgHgTI AND EX4 

IOn Elemenr E 

C Si Ge Sn Pb 

C5HJTl* 31 56 38 6 4 
EXa - 10G 27 19 3 
EX3+ 100 82 100 100 59 
EXZ+ 0.8 0.4 1.2 56 2 
EX+ - - 1.6 65 43 
Ef - - - - 100 
CgHgE+ 0.05 <O.Ol 5.1 19 0.3 
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TABLE 2 

ATOMIZATION ENERGIES (kcaI/moI) OF CgHgE+ IONS 

ElelIlent structure - 

A B C 

C -1067 -1i68 -1255 
Si -1007 -1128 -1173 
Gl? -994 -1115 -1155 
Sn -998 -1121 -1150 
Pb -992 -1105 -1112 

1.34 w and C-H 1.08 A [ll]. Since upon replacement of a carbon atom by a 
hetero-atom in the benzene ring the configuration of the whole ion should 
change, atom coordinates in the elementaphenyl structure were determined for 
a closed hexagon having a maximum area at a C-C bond length of 1.4 A4 and 
the C-E bond lengths listed in Table 3; the C-H bond length was taken as 1.08 
& The atom coordinates in the silaphenyl ion calculated in this way are in 
good agreement with those obtained by Blustin [ 141 for the silabenzene mole- 
cule. 

As follows from Table 2, the most stable C5H5E’ ions are those with the 
nido-cluster structure; the stability increasing from lead to carbon. The conclu- 
sion that the cluster-ions, C, are most stable in the case of carbon is rather 
unexpected. We therefore calculated the total energies of the three structures 
A-C of C6HSf ions by the CNDO/B method [12]. Results were in complete 
agreement with the statistical calculation, i.e. the most stable are C6H5+ ions 
with the nido-cluster structure_ 

It therefore may be assumed that C6H5+ ions in the mass spectrum of C&Fe- 
(C0)2CH3 have the structure of cluster ions of type C and are formed by the 
the same type of route as C,H,Ge’ ions [S]. Their weak intensity (- 1%) com- 
pared with C,H5Ge+ ions (100%) is explained by strengthening of Fe-CH, and 
C-H as compared with Fe-Ge and Ge-CH3 bonds. 

Thus, the results point to the existence of charged nido-clusters of type C for 
all elements of Group IV, including carbon. These ions are formed in gas phase 
as a result of ion-molecular reactions and it is likely that they could be synthe- 
sized under normal conditions. Of most interest is the carbon cluster which is 
an isomer of the phenyl cation. 

TABLE 3 

C-E DISTANCES (?2) USED IN CALCULATIONS OF ATOMIZATION ENERGIES 

structure Element E 

C Si Ge Sn Pb 

A 1.4 1.8 1.9 2.05 2.15 
a 1.3 1.7 1.85 1.93 2.05 
C 1.53 1.92 2.0 2.16 2.29 
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Experimental 

Mass spectra were obtained on a AEI MS-30 mass spectrometer at an ioniza- 
tion chamber temperature of 150°C and an ionization voltage of 12-X V. 
The spectra were converted into the monoisotopic from by use of the AELITA 
program 1133. 
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