Journal of Organometallic Chemistry, 205 (1981) 157–160 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

MASS SPECTROMETRY OF π -COMPLEXES OF TRANSITION METALS. XXIII *. THE IONS $[C_5H_5E^{IV}]^+$ IN THE GAS PHASE. SYNTHESIS AND STRUCTURE

Yu.S. NEKRASOV, V.F. SIZOI, D.V. ZAGOREVSKII and Yu.A. BORISOV

Institute of Organo-Elemental Compounds, USSR Academy of Sciences, Vavilova 28, Moscow, 117334 (U.S.S.R.)

(Received July 17th, 1980)

Summary

The ions $C_5H_5E^*$ (E = C, Si, Ge, Sn, Pb) were generated in the gas phase. Calculations of the atomization energies confirm their structure as nido-cluster. It is suggested that such ions could be synthesized under normal conditions for all the Group IVA elements, including carbon.

In the mass spectra of π -cyclopentadienyliron dicarbonyl complexes, π -C₅H₅Fe(CO)₂ER₃, containing an iron—Group IV element bond (E = Si, Ge, Sn, Pb), intense ions C₅H₅E⁺ are present and these are often the most intense [1—6]. They are formed as a result of complex rearrangement from molecular or decarbonylated ions C₅H₅FeER₃ (R = alkyl or halide). This rearrangement involves the simultaneous participation of at least nine bonds and is characterized by very low activation energy [1,6]. The unusually high intensity of the C₅H₅E⁺ ions indicates their high stability. Three possible structures of this ion may be suggested: elementaphenyl (A) 6-elementalfulvenyl, (B) and half-sandwich or nido-cluster (C).

Previous calculations of atomization energies of these structures for $C_5H_5Ge^+$ by the statistical method [7] showed the nido-cluster to be the most stable [8].

^{*} For part XXII, see ref. 15.

Recently, Jutzi et al. synthesized nido-clusters of (pentamethylcyclopentadienyl)tin (I) and -germanium (II), the structures of which were confirmed by X-ray structural analysis [9,10].

Using the statistical method [7] we have now calculated the energies of the ions of the type A, B and C for all elements of Group IVA, including carbon, and generated them in the gas phase.

Ions $C_5H_5E^*$ are present in the mass spectra obtained by simultaneous evaporation of cyclopentadienylthallium with EX_4 molecules (X = Cl for E = C, Si, Ge and Sn and X = C_6H_5 for E = Pb) at a pressure in the ionization chamber of $10^{-5}-10^{-4}$ mM Hg (see Table 1). Their formation may be explained by interaction of neutral molecule C_5H_5Tl with the ions EX_n^* (n = 0-4), the most probable route being the reaction of C_5H_5Tl with EX_3^* ions (see Table 1).

In order to estimate the stabilities of $C_5H_5E^+$ ions, the atomization energies of structures A, B and C were calculated for all Group IV elements (Table 2). The structural parameters used in the calculations are listed in Table 3. Variation of E—C bond lengths within 0.1 Å does not change the ratios of the atomization energies for the structures nor the nature of the stability variation when passing from carbon to lead. Calculation of the nido-cluster structure was carried out for a planar cyclopentadienyl ring with distances C—C 1.43 Å and C—H 1.08 Å. The structure of the 6-elementafulvenyl was calculated assuming a symmetrical five-membered ring with distances C(1)—C(2) 1.44 Å, C(2)—C(3)

TABLE 1

RELATIVE INTENSITIES OF $C_5H_5TI^*$, EX_n^* and $C_5H_5E^*$ ions at simultaneous evaporation of C_5H_5TI and EX_4

Ion	Element E					
	c	Si	Ge	Sn	Рь	
C ₅ H ₅ Tl ⁺	31	56	38	6	4	
EX4	-	106	27	19	3	
EX3 ⁺	100	82	100	100	59	
EX2+	· 0.8	0.4	1.2	56	2	
ex⁺	-		1.6	65	43	
E ⁺	~	_	<u></u>	-	100	
C ₅ H ₅ E ⁺	0.05	< 0.01	5.1	19	0.8	

Element	Structure -			
	A	в	c	
C	-1067	-1168		
Si	-1007	-1128	-1173	
Ge	-994	-1115	-1155	
Sn	-998	-1121	-1150	
РЬ	992	-1105	-1112	

TABLE 2 ATOMIZATION ENERGIES (kcal/mol) OF $C_5H_5E^+$ IONS

TABLE 3

1.34 Å and C—H 1.08 Å [11]. Since upon replacement of a carbon atom by a hetero-atom in the benzene ring the configuration of the whole ion should change, atom coordinates in the elementaphenyl structure were determined for a closed hexagon having a maximum area at a C—C bond length of 1.4 Å and the C—E bond lengths listed in Table 3; the C—H bond length was taken as 1.08 Å. The atom coordinates in the silaphenyl ion calculated in this way are in good agreement with those obtained by Blustin [14] for the silabenzene molecule.

As follows from Table 2, the most stable $C_5H_5E^+$ ions are those with the nido-cluster structure; the stability increasing from lead to carbon. The conclusion that the cluster-ions, C, are most stable in the case of carbon is rather unexpected. We therefore calculated the total energies of the three structures A–C of $C_6H_5^+$ ions by the CNDO/2 method [12]. Results were in complete agreement with the statistical calculation, i.e. the most stable are $C_6H_5^+$ ions with the nido-cluster structure.

It therefore may be assumed that $C_6H_5^+$ ions in the mass spectrum of $C_5H_5Fe-(CO)_2CH_3$ have the structure of cluster ions of type C and are formed by the the same type of route as $C_5H_5Ge^+$ ions [6]. Their weak intensity (~1%) compared with $C_5H_5Ge^+$ ions (100%) is explained by strengthening of Fe-CH₃ and C-H as compared with Fe-Ge and Ge-CH₃ bonds.

Thus, the results point to the existence of charged nido-clusters of type C for all elements of Group IV, including carbon. These ions are formed in gas phase as a result of ion-molecular reactions and it is likely that they could be synthesized under normal conditions. Of most interest is the carbon cluster which is an isomer of the phenyl cation.

Structure	Element E					
	C	Si	Ge	Sn	Pb	
A	1.4	1.8	1.9	2.05	2.15	
в	1.3	1.7	1,85	1.93	2.05	
С	1.53	1.92	2.0	2.16	2.29	

Experimental

Mass spectra were obtained on a AEI MS-30 mass spectrometer at an ionization chamber temperature of 150° C and an ionization voltage of 12-15 V. The spectra were converted into the monoisotopic from by use of the AELITA program [13].

References

- 1 G. Innorta, A. Foffani and S. Torroni, Inorg. Chim. Acta, 19 (1976) 263.
- 2 W. Malisch and M. Kuhn, Chem. Ber., 107 (1974) 979.
- 3 J. Lewis, A.R. Manning, J.R. Miller and J.M. Wilson, J. Chem. Soc. A, (1966) 1663.
- 4 M. Höfler, J. Scheuren and D. Spilker, J. Organometal. Chem., 102 (1975) 205.
- 5 D.S. Field and N.J. Newlands, J. Organometal. Chem., 27 (1971) 213.
- 6 Yu. S. Nekrasov, D.V. Zagorevskii, V.F. Sizoi and F.S. Denisov, J. Organometal. Chem., 97 (1975) 253.
- 7 Yu. A. Borisov, Dokl. Akad. Nauk SSSR, 224 (1975) 98.
- 8 Yu. S. Nekrasov, Yu. A. Borisov and S.S. Chernov, Izv. Akad. Nauk SSSR, Ser. Khim., (1979) 1420.
- 9 P. Jutzi, F. Kohl and C. Krüger, Angew. Chem. Int. Ed., 18 (1979) 59.
- 10 P. Jutzi, F. Kohl, P. Hofmann, C. Krüger and Yi-Hung Tsay, Chem. Ber., 113 (1980) 757.
- 11 N. Norman and P. Post, Acta Cryst., 14 (1961) 503.
- 12 Yu. S. Nekrasov and Yu. A. Borisov, Izv. Akad. Nauk SSSR, Ser. Khim., (1980) 1693.
- 13 Yu. N. Sukharev and Yu. S. Nekrasov, Org. Mass Spectrom., 11 (1976) 1232.
- 14 P.H. Blustin. J. Organometal. Chem., 166 (1979) 21.
- 15 A.N. Nesmeyanov, D.V. Zagorevskii, Yu. S. Nekrasov, V.N. Postnov and A.M. Baran, J. Organometal. Chem., 201 (1980) 293.